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~ Exeeutive Summary

Statement of objectives ‘

The research carried out under this grant concerned the development of improved modeling and
control techniques. The techniques are built upon observational data and are tailored to the problem
at hand. The models used are global discrete time mappings, ordinary and partial differential
equations.

One major effort of the proposed program is the exploitation of symmetries to constrain the fitted
models. These models are more compact and can accurately model behaviors not explicitly shown
in the data.

A second major effort is an examination of synchronization between identical dynamical systems.
The focus has been on developing a method for designing coupling schemes that guarantee syn-
chronous motion between the systems. These results are analytical and represent a method for
determining the complete state of a nonlinear system from limited measurements.

A third major effort concerned the development of symbolic time series methods for parameter
fitting in both low- and high-dimensional systems. This technique shows particular promise in
high-noise situations, where it has been shown to be capable of robust parameter estimation.

Methods employed

The models used are expansions in polynomials, or have been derived from first principles. The basis
set, used for the expansion is constructed to be orthonormal on the measured data after embedding
into an appropriate state space. The coefficients of the models are fit to the data by either a least
squares, or an annealing procedure using the raw data or its coarse-grained symbolic form. In
addition, the fitting procedure accounts for the size and complexity of the expansion models. This
results in models that are optimal in the sense that they are the simplest models (within a given
class of models) that are consistent with the data.

An important and novel aspect of the research program is the array of tests and constraints
implemented to ensure that the models are correct and contain the right physics. In order to insure
that the models are close approximations to the true equations of motion in the reconstructed phase
space a series of a priori constraints and/or a posteriori tests are imposed. The a priori constraints
involve determining from the data any symmetries the attractor may exhibit and restricting the class
of models to those that respect the symmetries. The a posterior: test compares the coarse-grained
symbol statistics generated by the model with that of the data.

Significance of the proposed activity

The proposed research will significantly enhance the ability to detect, model and control the dynamics
of low-dimensional nonlinear systems using observed time series data. The synchronization of two
nonlinear oscillators can be exploited as a means of nondestructive testing of devices, or as a real
time monitor of dynamics, or as a mechanism for controlling dynamics. The approach used is
comprehensive and will be implemented on experimentally obtained data from a diverse group of
sources.
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C. RESEARCH OBJECTIVES

The goal of this research program is the development of new robust algorithms for diagnosing,
modeling, and controlling nonlinear systems that have only a few degrees of freedom. (In this
context the number of degrees of freedom is equal to the number of independent variables needed
to accurately model the system which generated the data.) While systems with a few degrees of
freedom have been the focus of the research, an important result is that some of the techniques
also are applicable to spatio-temporal (distributed) systems. These systems are typically modeled
as partial differential equations and, in principle, have an infinite number of degrees of freedom.

Time-series data, in conjunction with whatever a priori information is known about the system, are
used as input to the modeling process. These methods are robust to uncertainties in the models, and
to the presence of noise [1-5]. These techniques have been successfully applied to data from chemical
reactions, electronic circuits, and mechanical systems [1]. Other researchers are also beginning to
apply these methods to experimental data [6-8].

D. BACKGROUND

Successful modeling relies on mathematical results from Maiié [9], Takens [10], Sauer, Yorke, and
Casdagli [11], and others who have shown that it is often possible to reconstruct the full multidimen-
sional dynamics of a nonlinear system from a single scalar time series, s(n) = s(n7) forn=1,2,...
(7 is the sampling interval associated with the measurements) [12]. The most common technique
uses time delays to form vectors y(n)

Y(n) = [S(TL), S(n +T)’ ...,s(n + (d - 1)T)])

where y(n) € IR®. Time evolution, as given by y(n) — y(n + 1), is equivalent (diffeomorphic)
to the true evolution of the system that produced the scalar time series. Fraser and Swinney [13]
have developed a technique for determining 7" from data, while Kennel et. al. [14] have developed a
technique for determining d.

1. Low-dimensional modeling

The dynamics is modeled by global discrete-time maps

y(n +1) = Fly(n)],

or global ordinary differential equations (ODE’s)

dy
i F(y).

When modeling the observed system via ODE’s, time evolution of the data is modeled as a single
implicit Adams integration time step

y(n+1) =y(n) + Ti/[:agM)F[y(n +1-7)].

The ag-M)’s are the Adams integration coefficients, and are known for all values of jand M.
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Noisy Lorenz Attractor Noisy Embedded Lorenz Attractor

Z
Z=s(n+10) _

For a generic time series one does not know the functional form of F. Hence, the best that one
can hope for is a series expansion in some set of basis functions, oM (z),

Np

F(z) = 3 p90().

1=0

The data approximates an invariant distribution on the attractor that defines the system under
observation

plz) = Igi_r)r;%zlé[z—y(n)],

where N is the number of data vectors. The basis functions ¢"(z), are polynomials constructed
(via Gram-Schmidt) to be orthonormal on the attractor defined by the data,

(8016 = [ dzp(z) $(2) $°)(2)
= 51.1-

In this equation I and J are index vectors used to indicate the order of the polynomials.
It has been shown that this formulation of the modeling problem allows more accurate and robust
determination of F, for larger sampling intervals, than previous methods [1,7,8,15-17].

E. NEW RESULTS

1. Using symmetries to constrain expansion models

Symmetries represent an important class of physical properties that can be used to constrain models
of dynamical systems. Using a symmetry to constrain a model means restricting the functional form
of the model to one that, a priori, contains the symmetry. They can be determined from the data
and/or from first principles. We have found that if a symmetry is present in the data or the dynamics
then an equivariante model constructed from the data accurately models the dynamics [2].

To illustrate how symmetries constrain a model, suppose the attractor, A, is invariant under the

action of the symmetry S (So A = A). This condition results in the following equivariance condition
on F
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FIG. 2. Graphs of parameter uncertainty versus the index associated with the parameter.

F(Soy) =SoF(y). (1)

Clearly, Eq. (1) places restrictions on the functional form of F.

The Lorenz system is a dynamical system where we used symmetry to restrict the functional form
of F. Figure 1(a) shows a noisy representations of the true Lorenz attractor. Despite the noise,
Fig. 1(a) indicates that if S is a rotation about the Z axis by 7 radians then So A = A. The origin
of this symmetry is the £ — —z and y — —y invariance of the Lorenz equations. For this system
Eq. (1) implies that all terms proportional to z"y™ must vanish for even values of n + m. Thus,
on the basis of equivariance half of the terms in the model can be eliminated. Of course, if the
data y = [z,v, 2] is noise free then we expect the coeflicients of these terms to vanish. However,
experimental data is never noise free. Therefore, it is best to, a priori, eliminate terms from the
model.

Figure 1(b) shows a Lorenz attractor that has been reconstructed by embedding a scalar time
series given by the z coordinate of the data shown in Fig. 1(a). The time series is symmetric about

. zero which leads to the inversion symmetry (S = —1) evident in Fig. 1(b). Using an ensemble

of data sets we constructed models without the restriction of Eq. (1). The results are shown in
Fig. 2, where <p(l)> is the mean value of the parameter p® and o(" is the standard deviation of the
parameter about its mean value. The circles squares and diamonds indicate the first, second, and
third components of p®, respectively. The solid line represents o /| <p(l)> | =2.

For symbols above this line | <p(‘)> | £ o straddles zero. Hence, the value of p® obtained by the
fitting procedure is statistically indistinguishable from zero and one conjectures that their values are
dominated by noise, finite sample size, and round off effects. This is supported by noticing that all
of the symbols for index values 0, 4-9, and 20-34 are above the line. These indices correspond to
terms in F whose coefficients, p¥, should vanish because their basis function, ¢¥, is not equivariant
under S = —1.

For comparison we also estimated the uncertainty of the p®’s using standard statistical meth-
ods [2]. These uncertainties, u®, were found to be good estimates of o', Thus, in some cases, it is

possible to detect the presence of a symmetry from a single data set by examining u® /| <p(1)> | [2]-
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We also examined data from the electronic circuit shown in Fig. 3(a). It is possible to determine
from first principles that, for certain values of «, the dynamics lives on one of the two disjoint
attractors shown in Fig. 3(b) [18]. For this value of « a clear plane of symmetry can be seen between
the attractors and a single experimentally measured time series would correspond to one or the other
of these attractors, but not both. As « increases the two attractors merge into a single attractor via
a symmetry increasing bifurcation (also called a crisis [19]).

Our work examined data from before and after the bifurcation. When examining data taken
before the bifurcation we found that equivariant models constructed using data from one of the
attractors accurately mimics the dynamics on both attractors [2]. This is not the case for previous
modeling techniques, which require data from both attractors and two models [2]. Furthermore,
the equivariant model contains fewer coefficients than either of the nonequivariant models. When
modeling data taken after the bifurcation we found that we were able to detect the presence of the
symmetry using the methods discussed above for the Lorenz example.

a. Synchronization and the observer problem

Synchronization between a model and a physical system is a solution to the observer problem
for nonlinear plants. This approach couples the dynamics of the nonlinear plant to a model via
drive-response coupling

dx
fii—t:F(x‘t)
& =Fi1) -E-(y-x), @)

where x € IR? represents the dynamics of the plant and y € IR® represents the dynamics of the
model. (Here we ignore modeling errors, having examined these issues in a previous paper [20].)
The coupling, E, is a vector function of its argument and E(0) = 0. Evaluating E does not necessarily
require all components of x. Because the models are deterministic we know that if y = x at any one
time then y = x for all subsequent times. (The dynamics of Egs. (2) is said to be synchronized if
x =Yy.) Thus, if one can determine E such that lim; ,, |y — x| = 0 then one can determine, x, the
complete state of the plant by obtaining y from the model.

The major result of our research is a rigorous criteria which, if satisfied, guarantees that the
invariant manifold given by x = y is linearly stable. More importantly, the criteria can be used to
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design couplings, E, which satisfy the criteria. The criteria only uses knowledge of the uncoupled
dynamics, F, and many of the important calculations can be performed analytically [3].
Given the following optimal decomposition [3]

= (DF) — DE(0) (3)

the criteria for linear stability of the manifold x =y is [3]
~R[A1] > ([P~ [DF(x) - (DF)] P}, (4)

where A; is the eigenvalue of A that has the largest real part, R[A] is the real part of A, and P is
a matrix composed of the eigenvectors of A. In Egs. (3) and (4), () denotes a time average along
the driving trajectory, x

Equations (3) and (4) represent definitions and conditions that indicate when synchronous motion
along a particular driving trajectory becomes unstable to small perturbations in directions transverse
to the synchronization manifold. The criterion is rigorous and sufficient. However, because it is based
on norms it is not necessary.

Because the integral in Eq. (4) is positive semi-definite the inequality can not be satisfied unless
R[A1] < 0. This condition is reminiscent of the discussion of stability of linear systems. In addition,
it can be shown that up to second order the criteria for linear stability is R[A;] < 0 [3].

The stability criteria depends explicitly on the measure of the driving trajectory. Work by many
authors indicates that the most unstable trajectories are likely to be those associated with fixed points
of F and unstable periodic orbits of F with the shortest periods [21-25]. Given these observations
we conjecture that if these trajectories are stable then the manifold x = y should be stable for all
x [3].

Equation (4) has a geometrical interpretation that can be used to design couplings that yield
stable synchronous motion. Both sides of Eq. (4) are functions of the elements of DE(0). Thus,
<||P‘1 [DF(x) — (DF)] P||> = const. = C) defines, ¥y, a family of surfaces in the parameter space of
the elements of DE(0). In the same parameter space —R[A;] = const. = C, defines, T,, a different
family of surfaces. Therefore, the boundary of that portion of parameter space that yields linearly
stable synchronous motion is the intersection of the family of surfaces ¥, with the family of surfaces
YA. This approach is analytically shown in our manuscripts [3].

2. Symbolic time series analysis

In symbolic time-series analysis the state space of the system is partitioned into a finite number
of cells and a symbol, s, is assigned to each cell. Such a symbolic approach is appealing, since the
symbol statistics is robust in the presence of noise. Our previous work [4] showed that the symbolic
data are quite robust and that even at high noise levels (signal/noisexs O(1)) the effects of noise on
the symbolic data can be tracked and effectively eliminated.

To briefly summarize the approach, we convert the analog signal stream into a symbol sequence by
passing it through a threshold function which takes {z,} = (21,22, -, 2n) = {82} = (51,82, ", 5n)
where s; € (0,1). For example, if z,, < z* then s, = 0 and if z,, > z* then s, = 1. From the symbol
sequence, {s,}, we construct the symbol tree '

Do Y4
Doo Po1 Do bu

Dooo Poo1 Do1o Do11 DPioo Pio1 D110 D11
etc.
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FIG. 4.

Here poo: is the probability of observing the sequence 001, etc. The symbol tree is a compact
summary of (coarse grained) information about multiple-time-step correlations in the signal. Our
goal is to construct a phase space evolution rule (F(y; X)) which generates the same symbol tree
down to some level (X represents the parameters in the model which can be varied).

The parameter fitting is done by varying the model dynamics such that, £ (X), the “distance”
between the observed symbol tree and the tree generated by the model is minimized (see [4,5] for
details). A plot of £(X) vs X constitutes the error landscape and reconstruction amounts to finding
the global minimum in this landscape.

This approach has successfully been applied to fit parameters in spatio-temporal systems. Specif-
ically [5] turbulent solutions of the complex Ginzburg-Landau equation

%—‘3 =A+ (1 -ia)VZA - (1-iB)|APA
in both 1 and 2 spatial dimensions were generated with target values chosen for the parameters
Xo = (ayp, fo). Time-series were then extracted from a single spatial site and used to construct the
symbol tree. Fitting was carried out using only the symbol statistics. The error landscape for the
fitting is shown in Fig. 4. As can be seen, there is a global minimum at the target value of §, = 4.0.
An annealing calculation was then carried out and proved capable of estimating the parameters
which generated the turbulent signal to within 2 — 3 significant figures [5].
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F. ACCOMPLISHMENTS AND NEW FINDINGS

The primary accomplishments of the grant period (4/1/95 - 9/30/96) are:
1. Low-dimensional modeling

e Exploitation of symmetries to constrain the modeling process. Modeling algorithms were
developed which detect and impose symmetries on the functional form of the model. This
has been shown to improve the stability of the modeling process, as well as ensuring that
important properties of the dynamical system are represented by the model even if they
are not directly present in the data set [2).

e A rigorous sufficient criteria has been derived which guarantees linearly stable synchroniza-
tion between dynamical systems when they are coupled in a drive-response manner. This
result is an analytic method for solving the observer problem for nonlinear plants [3].

2. Symbolic time series analysis

e Demonstration that the symbol sequence statistics can be used as a target for reconstruction
for spatio-temporal systems. Exhaustive numerical evidence was developed which indicates
that the approach is both robust and convergent [5].

G. PERSONNEL SUPPORTED
Senior Personnel
E. R. Tracy (1 month).
Reggie Brown (3 months).

Post-doctoral fellow
Xian-zhu Tang (began 9/1/95).
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. R. Brown and N. F. Rulkov, “Synchronization of chaotic systems: transverse stability of tra-
jectories in invariant manifolds”, submitted for publication.

. R. Brown, V. In and E. R. Tracy, “Parameter uncertainties in models of equivariant dynamical
systems”, to appear in Physica D.

. X.-Z. Tang, E. R. Tracy and R. Brown, “Symbol statistics and spatio-temporal systems”, to
appear in Physica D.

. R. Brown, “Using Models to diagnose, test, and control chaotic systems”, to appear in the
proceedings of the Third Experimental Chaos Conference.

. G. Gouesbet, L. Le Sceller, C. Letellier and R. Brown, “Reconstruction of a set of equations
from scalar time series”, to appear in the proceedings of the Eleventh Annual Florida Workshop
on Nonlinear Astronomy.

I. INTERACTIONS/TRANSITIONS

1. Presentations at meetings

. Poster presentation (contributed) at Sherwood (Fusion Theory) Meeting, Lake Tahoe NV (April,
1995), E. Tracy.

. Contributed Talk, Third SIAM Conference on Applications of Dynamical Systems”, (May 1995)
Reggie Brown.

. Invited Talk, Third Experimental Chaos Conference, Edinburgh, SCOTLAND (August 1995)
Reggie Brown.

. Poster presentation (contributed) at American Physical Society, Division of Plasma Physics
Meeting, Lousiville, KY (October, 1995), E. Tracy.

. Seminar, U. of Richmond, Physics Department (November. 1995), E. Tracy.

. Contributed Talk, Dynamics Days Conference, Houston, TX (January, 1996) X. Tang.

. Colloquium, College of Wm. & Mary, Physics Department, (February, 1996) Reggie Brown.
. Seminars were also given at AFOSR at DOE (December, 1995).




2. Transitions

1. Wm & Mary/AlliedSignal:

Performer:

Professors E. R. Tracy and Reggie Brown, Dr. X.-Z. Tang & Ms. Sharon Burton.
Telephone (Tracy): (757)221-3527.

Customer:

AlliedSignal Inc.

Microelectronics & Technology Center

9140 Old Annapolis Road/MD 108

Columbia, MD 21045

Contact:

Dr. R. Burne

Research Manager

(410)964-4159.

Anticipated result: Using the symbol statistics to detect transitions in complex systems, e.g.
noise-driven turbulent flows.

Application: Early detection of rotating stall in turbines.

2. Oak Ridge National Lab/Ford Motor Company:

Work performed as part of a Cooperative Research and Development Agreement (CRADA), number
ORNL-95-0337 titled “Engine Control Improvement Through Application of Chaotic Time Series
Analysis”.

Performer:

Dr. C. Stuart Daw

Oak Ridge National Laboratory

P.O. Box 2009

Oak Ridge, TN 37831-8088

Telephone: (615)574-0373.

Customer:

Ford Motor Co.

Dearborn, MI

Contact:

Dr. John Hoard

(313)594-1316.

Anticipated result: Using symbol statistics to do parameter fitting for an internal combustion
engine model. (Aspects of the work are subject to a patent disclosure.)

Application: Improved feedback control for internal combustion engines to reduce NOx emission
and increase fuel efficiency.
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